Объемная плотность энергии в точке. Объемная плотность энергии электрического поля. Экспериментальное определение энергии, запасённой конденсатором

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S ·d представляет собой объем V , занимаемый полем. Следовательно,

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w . Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

В изотропном диэлектрике направления векторов D и E совпадают и
Подставим выражение , получим

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ . В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов q i на величину dr i , составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р . Следовательно, .
Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V . Для этого нужно вычислить интеграл:

ВОПРОС

электри́ческий ток - направленное (упорядоченное) движение заряженных частиц . Такими частицами могут являться: вметаллах - электроны, в электролитах - ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках - электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля .

Электрический ток имеет следующие проявления:

· нагревание проводников (в сверхпроводниках не происходит выделения теплоты);

· изменение химического состава проводников (наблюдается преимущественно в электролитах);

· создание магнитного поля (проявляется у всех без исключения проводников) .

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток .

Различают переменный (англ. alternating current , AC), постоянный (англ. direct current , DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток - ток, направление и величина которого слабо меняются во времени.

Переменный ток - ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток - «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ) . Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости ииндуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты - ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток - ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи[править | править исходный текст]

Основная статья: Вихревые токи

Вихревые токи (токи Фуко) - «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока» , поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики[править | править исходный текст]

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц. .

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм . Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронтаэлектромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока[править | править исходный текст]

Основная статья: Сила тока

Электрический ток имеет количественные характеристики: скалярную - силу тока, и векторную - плотность тока.

Сила тока - физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А).

По закону Ома сила тока на участке цепи прямо пропорциональна напряжению , приложенному к этому участку цепи, и обратно пропорциональна егосопротивлению :

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока среднее значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна. Поэтому применяют следующие понятия:

· мгновенные напряжение и сила тока, то есть действующие в данный момент времени.

· амплитудные напряжение и сила тока, то есть максимальные абсолютные значения

· эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.

Плотность тока - вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярноенаправлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде пропорциональна напряжённости электрического поля и проводимости среды :

Мощность[править | править исходный текст]

Основная статья: Закон Джоуля - Ленца

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

· активное сопротивление - сопротивление теплообразованию;

· реактивное сопротивление - «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ) .

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля - Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь определяется скалярным произведением вектора плотности тока и вектора напряжённости электрического поля в данной точке:

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны , зависимость сопротивления от длины волны и проводника относительно проста:

Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота[править | править исходный текст]

См. также: Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока - наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются . Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения[править | править исходный текст]

Основная статья: Ток смещения (электродинамика)

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения - векторная величина, пропорциональная скорости изменения электрического поля во времени:

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения в конденсаторе определяется по формуле:

,

где - заряд на обкладках конденсатора, - разность потенциалов между обкладками, - ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников[править | править исходный текст]

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы - здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма - ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты - «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока» . Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Электрические токи в природе[править | править исходный текст]

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Атмосферное электричество - электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

· при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;

· напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;

· атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;

· место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю . Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10 −12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А .

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма - естественный коронный электрический разряд.

Биотоки - движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Применение[править | править исходный текст]

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие -электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии[править | править исходный текст]

· получения механической энергии во всевозможных электродвигателях,

· получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,

· получения световой энергии в осветительнных и сигнальных приборах,

· возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,

· получения звука,

· получения различных веществ путём электролиза. Здесь электромагнитная энергия превращается в химическую,

· создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине[править | править исходный текст]

· диагностика - биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Разделфизиологии, изучающий электрические явления в организме называется электрофизиология.

· Электроэнцефалография - метод исследования функционального состояния головного мозга.

· Электрокардиография - методика регистрации и исследования электрических полей при работе сердца.

· Электрогастрография - метод исследования моторной деятельности желудка.

· Электромиография - метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.

· Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезни Паркинсона и эпилепсии, также для электрофореза.Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

ВОПРОС

Электрический ток. Сила тока.
Закон Ома для участка цепи. Сопротивление проводников.
Последовательное и параллельное соединение проводников.
Электродвижущая сила. Закон Ома для полной цепи.
Работа и мощность тока.

Направленное движение электрических зарядов называют электрическим током . В металлах могут свободно перемещаться электроны, в проводящих растворах - ионы, в газах могут существовать в подвижном состоянии и электроны, и ионы.

Условно за направление тока считают направление движения положительных частиц, ток идет от(+) к (-), поэтому в металлах это направление противоположно направлению движения электронов.

Сила тока I- величина заряда, проходящего в единицу времени через полное сечение проводника. Если за время t через полное сечение проводника прошел заряд q, то

Единица измерения силы тока - Ампер. Если состояние проводника (его температура и др.) стабильно, то между приложенным к его концам напряжением и возникающим при этом током существует связь. Она называется Закон Ома и записывается так:

R - электрическое сопротивление проводника, зависящее от рода вещества и от его геометрических размеров. Единичным сопротивлением обладает проводник, в котором возникает ток 1 А при напряжении 1 В. Эта единица сопротивления называется Ом.

Различают последовательное

и параллельное соединения проводников.

При последовательном соединении ток, протекающий по всем участкам цепи, одинаков, а напряжение на концах цепи равна сумме напряжений на всех участках.

Общее сопротивление равно сумме сопротивлений

При параллельном соединении проводников постоянным остается напряжение, а ток складывается из суммы токов, протекающих по всем ветвям.

В этом случае складываются величины, обратные сопротивлению:

1/R= 1/R 1 +1/R 2 или можно записать так

Для получения постоянного тока на заряды в электрической цепи внутри источника тока должны действовать силы, отличные от сил электростатического поля; их называют сторонними силами .

Если рассматривать полную электрическую цепь , необходимо включить в нее действие этих сторонних сил и внутренне сопротивление источника тока r. В этом случае закон Ома для полной цепи примет вид:

Е - электродвижущая сила (ЭДС) источника. Она измеряется в тех же единицах, что и напряжение.
Величину (R+r) называют иногда полным сопротивлением цепи .

Сформулируем правила Киркгофа :
Первое правило: алгебраическая сумма сил токов в участках цепи, сходящихся в одной точке разветвления, равна нулю.
Второе правило: для любого замкнутого контура сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.
Мощность тока рассчитывается по формуле

P=UI=I 2 R=U 2 /R.

Закон Джоуля-Ленца. Работа электрического тока (тепловое действие тока)

A=Q=UIt=I 2 Rt=U 2 t/R.

ВОПРОС

Магни́тное по́ле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения ; магнитная составляющая электромагнитного поля .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения - векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

· Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают ; однако в магнитной среде вектор не несет уже того же физического смысла , являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности,свет и все другие электромагнитные волны.

Электрический ток(I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

· С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействияпереносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

Источники магнитного поля[править | править исходный текст]

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментамичастиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление[править | править исходный текст]

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла.

Проявление магнитного поля[править | править исходный текст]

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В системе единиц СИ сила Лоренца выражается так:

в системе единиц СГС:

где квадратными скобками обозначено векторное произведение.

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов[править | править исходный текст]

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов: одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями, и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь, помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции[править | править исходный текст]

Основная статья: Электромагнитная индукция

Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции, порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).

ВОПРОС

акон Био́-Савара-Лапла́са - физический закон для определения вектора индукции магнитного поля, порождаемого постояннымэлектрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).

Закон Био-Савара-Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био-Савара-Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты.

В современной формулировке закон Био-Савара-Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био-Савара-Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).

Для тока, текущего по контуру (тонкому проводнику)[править | править исходный текст]

Пусть постоянный ток течёт по контуру (проводнику) , находящемуся в вакууме, - точка, в которой ищется (наблюдается) поле, тогда индукция магнитного поля в этой точке выражается интегралом (в Международной системе единиц (СИ))

где квадратными скобками обозначено векторное произведение, - положение точек контура , - вектор элемента контура (ток течет вдоль него); -магнитная постоянная; - единичный вектор, направленный от элемента контура к точке наблюдения.

Энергия электрического поля.

Энергию заряженных проводников и конденсаторов обычно определяют через их заряды и потенциалы. Можно, однако, связать энергию заряженной системы с характеристиками ее электрического поля. Для этого рассмотрим плоский конденсатор, параметры которого указаны на рисунке 52.1.

Воспользуемся формулой (51.5) и выполним преобразования с учетом выражений (41.2) и (35.3):

Величина - объем пространства между пластинами конденсатора. Пренебрегая искажениями поля у краев пластин (краевым эффектом), можно считать, что поле конденсатора сосредоточено между его обкладками. Тогда V - это и объем электрического поля. В соответствии с этим формулу (52.1) запишем в виде

. (52.2)

Выражение (52.2) определяет энергию заряженного конденсатора через характеристики электрического поля: его напряженность Е и объем V . На основе этого можно сделать вывод о том, что энергия локализована в электрическом поле, что само поле обладает энергией, а не электрический заряд. По этому поводу следует сказать, что в электростатике нет ответа на данный вопрос, так как рассматриваются стационарные поля, создаваемые электрическими зарядами. Переменные поля могут существовать независимо от электрических зарядов и распространяться в виде электромагнитных волн. Перенос энергии электромагнитными волнами доказан экспериментально и применяется в телекоммуникационных системах. Это дает основание утверждать, что электрическое поле является носителем энергии. Следовательно, этим уравнением определяется энергия электрического поля. Связь энергии поля с его объемом подтверждает материальность электрического поля.

Значение энергии, приходящейся на единицу объема поля, называется объемной плотностью энергии .

Поле плоского конденсатора однородно и энергия распределена в нем с одинаковой плотностью. Поэтому можно записать:

Единица объемной плотности энергии - джоуль на метр в кубе . Объединив формулы (52.3) и (52.2), получаем

.

Выполним преобразования с использованием выражения (47.1):

. (52.4)

Воспользуемся уравнением и заменим в нем электрическое смещение D в соответствии с формулой (47.6):

. (52.5)

Первое слагаемое в этом выражении совпадает с плотностью энергии электрического поля в вакууме (), второе слагаемое представляет собой энергию, затраченную на поляризацию диэлектрика.

Формулы для плотности энергии были получены для однородного поля, но они применимы для всякого поля в изотропном диэлектрике. Это позволяет рассчитать энергию поля, заключенную в любом объеме:



, (52.6)

где для неоднородного поля напряженность должна быть задана функцией .

Глава 5. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Если проводник поместить во внешнее электростатическое поле, то оно будет действовать на его заряды, которые начнут перемещаться. Это процесс протекает очень быстро, после его завершения устанавливается равновесное распределение зарядов, при котором электростатическое поле внутри проводника оказывается равным нулю. С другой стороны, отсутствие поля внутри проводника говорит об одном и том же значении потенциала в любой точке проводника, а также о том, что вектор напряженности поля на внешней поверхности проводника перпендикулярен ей. Если бы это было не так, появилась бы составляющая вектора напряженности, направленная по касательной к поверхности проводника, что вызвало бы перемещение зарядов, и равновесное распределение зарядов нарушилось бы.

Если мы зарядим проводник, находящийся в электростатическом поле, то, заряды у него будут располагаться только на внешней поверхности, так как, в соответствии с теоремой Гаусса, из-за равенства нулю напряженности поля внутри проводника нулю будет равен и интеграл от вектора электрического смещения D по замкнутой поверхности, совпадающей с внешней поверхностью проводника, который, как было установлено ранее, должен быть равен заряду внутри названной поверхности, т. е. нулю. При этом возникает вопрос о том, можем ли мы сообщить такому проводнику любой, сколь угодно большой заряд, Чтобы получить ответ на этот вопрос, найдем связь между поверхностной плотностью заряда и напряженностью внешнего электростатического поля.

Выберем бесконечно малый цилиндр, пересекающий границу «проводник – воздух» так, чтобы его ось была ориентирована вдоль вектора Е . Применим к этому цилиндру теорему Гаусса. Понятно, что поток вектора электрического смещения вдоль боковой поверхности цилиндра будет равна нулю из-за равенства нулю напряженности поля внутри проводника. Поэтому полный поток вектора D через замкнутую поверхность цилиндра будет равен только потоку через его основание. Этот поток, равный произведению D∆S , где ∆S – площадь основания, равен суммарному заряду σ∆S внутри поверхности. Иными словами, D∆S = σ∆S , откуда следует, что

D = σ , (3.1.43)

тогда напряженность электростатического поля у поверхности проводника

E = σ /(ε 0 ε) , (3.1.44)

где ε – диэлектрическая проницаемость среды (воздуха), которая окружает проводник.

Поскольку поле внутри заряженного проводника отсутствует, то создание внутри него полости ничего не изменит, т. е. не повлияет на конфигурацию расположения зарядов на его поверхности. Если теперь проводник с такой полостью заземлить, то потенциал во всех точках полости будет равен нулю. На этом основана электростатическая защита измерительных приборов от влияния внешних электростатических полей.

Теперь рассмотрим проводник, удаленный от других проводников, других зарядов и тел. Как нами было установлено ранее, потенциал проводника пропорционален его заряду. Опытным путем было установлено, что проводники, изготовленные из разных материалов, будучи заряженными до одного и того же заряда, обладают разными потенциалами φ . И наоборот, у проводников из разных материалов, имеющих одинаковый потенциал, различаются заряды. Поэтому мы можем записать, что Q = Cφ, где

C = Q/φ (3.1.45)

называется электроемкостью (или просто емкостью ) уединенного проводника. Единицей измерения электроемкости является фарад (Ф), 1 Ф – емкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда, равного 1 Кл.

Поскольку, как было установлено ранее, потенциал шара радиуса R в диэлектрической среде с диэлектрической проницаемостью ε

φ =(1/4πε 0)Q/εR , (3.1.46)

то с учетом 3.1.45 для емкости шара получим выражение

C = 4πε 0 εR . (3.1.47)

Из 3.1.47 следует, что емкостью в 1 Ф обладал бы шар в вакууме и имеющий радиус порядка 9*10 9 км, что в 1400 раз превышает радиус Земли. Это говорит о том, что 1 Ф – это очень большая электроемкость. Емкость Земли, например, всего около 0.7 мФ. По этой причине на практике пользуются миллифарадами (мФ), микрофарадами (мкФ), нанофарадами (нФ) и даже пикофарадами (пФ). Далее, поскольку ε – безразмерная величина, то из 3.1.47 получаем, что размерность электрической постоянной ε 0 – Ф/м.

Выражение 3.1.47 говорит о том, что проводник может обладать большой емкостью только при очень больших размерах. В практической же деятельности требуются устройства, которые при небольших размерах были бы способны накапливать большие заряды при сравнительно небольших потенциалах, т. е. имели бы большие емкости. Такие устройства называются конденсаторами .

Мы уже говорили о том, что, если к заряженному проводнику приближать проводник или диэлектрик, на них будут наводиться заряды так, что на ближайшей к заряженному проводнику стороне привносимого тела возникнут заряды противоположного знака. Такие заряды будут ослаблять то поле, которое создается заряженным проводником, и это будет понижать его потенциал. Тогда, в соответствии с 3.1.45, мы можем говорить об увеличении емкости заряженного проводника. На такой основе как раз и создают конденсаторы.

Обычно конденсатор состоит из двух металлических обкладок , разделенных диэлектриком . Его конструкция должна быть такой, чтобы поле было сосредоточено только между обкладками. Этому требованию удовлетворяют две плоские пластины , два коаксиальных (имеющих одну и ту же ось) цилиндра разного диаметра и две концентрические сферы . Поэтому конденсаторы, построенные на таких обкладках, называются плоскими , цилиндрическими и сферическими . В повседневной практике чаще используют два первых типа конденсаторов.

Под емкостью конденсатора понимают физическую величину С , которая равна отношению заряда Q , накопленного в конденсаторе, к разности потенциалов (φ 1 – φ 2 ), т. е.

C = Q /(φ 1 – φ 2) . (3.1.48)

Найдем емкость плоского конденсатора, который состоит из двух пластин площадью S , отстоящих друг от друга на расстояние d и имеющих заряды +Q и –Q . Если d мало по сравнению с линейными размерами пластин, то краевыми эффектами можно пренебречь и считать поле между обкладками однородным. Поскольку Q = σS , а, как было показано ранее, разность потенциалов между двумя разноименно заряженными пластинами с диэлектриком между ними φ 1 – φ 2 = (σ /ε 0 ε)d, то после подстановки этого выражения в 3.1.48 получаем

C = ε 0 εS/d . (3.1.49)

Для цилиндрического конденсатора длиной l и радиусами цилиндров r 1 и r 2

C = 2πε 0 εl/ln(r 2 /r 1) . (3.1.50)

Из выражений 3.1.49 и 3.1.50 хорошо видно, как можно увеличить емкость конденсатора. Прежде всего, для заполнения пространства между обкладками следует использовать материалы с максимально большой диэлектрической проницаемостью. Другим очевидным способом повышения емкости конденсатора является уменьшение расстояния между обкладками, однако у этого способа имеется важный ограничитель пробой диэлектрика , т. е. электрический разряд через слой диэлектрика. Разность потенциалов, при которой наблюдается электрический пробой конденсатора, называется пробивным напряжением . Для каждого типа диэлектрика эта величина своя. Что же касается увеличения площади пластин плоского и длины цилиндрического конденсаторов для увеличения их емкости, то всегда существуют чисто практические ограничения размеров конденсаторов, чаще всего это размеры всего прибора, в состав которого входит конденсатор или конденсаторы.

Для того чтобы была возможность увеличивать или уменьшать емкость, на практике широко используется параллельное или последовательное соединение конденсаторов. При параллельном соединении конденсаторов разность потенциалов на обкладках конденсаторов одна и та же и равна φ 1 – φ 2 , а заряды на них будут равны Q 1 = C 1 (φ 1 – φ 2) , Q 2 = C 2 (φ 1 – φ 2) , … Q n = C n (φ 1 – φ 2) , поэтому полный заряд батареи из конденсаторов Q будет равен сумме перечисленных зарядов ∑Q i , которая в свою очередь равна произведению разности потенциалов (φ 1 – φ 2) на полную емкость С = ∑C i . Тогда для полной емкости конденсаторной батареи мы получаем

C = Q/(φ 1 – φ 2) . (3.1.51)

Иными словами, при параллельном соединении конденсаторов полная емкость конденсаторной батареи равна сумме емкостей отдельных конденсаторов.

При последовательном соединении конденсаторов заряды на обкладках равны по модулю, а полная разность потенциалов ∆φ батареи равна сумме разностей потенциалов ∆φ 1 на зажимах отдельных конденсаторов. Поскольку для каждого конденсатора ∆φ 1 = Q/C i , то ∆φ = Q/C =Q ∑(1/C i) , откуда получаем

1/C = ∑(1/C i) . (3.1.52)

Выражение 3.1.52 означает, что при последовательном соединении конденсаторов в батарею суммируются величины, обратные емкостям отдельных конденсаторов, при этом суммарная емкость оказывается меньше самой маленькой емкости.

Мы уже говорили о том, что электростатическое поле потенциально. Это значит, что любой заряд в таком поле обладает потенциальной энергией. Пусть имеется проводник в поле, для которого известны заряд Q , емкость C и потенциал φ , и пусть нам необходимо увеличить его заряд на dQ . Для этого надо совершить работу dA = φdQ = Сφdφ по перенесению этого заряда из бесконечности на проводник. Если же нам надо зарядить тело от нулевого потенциала до φ , то придется совершить работу, которая равна интегралу от Сφdφ в указанных пределах. Понятно, что интегрирование даст следующее уравнение

А = Сφ 2 /2 . (3.1.53)

Эта работа идет на повышение энергии проводника. Поэтому для энергии проводника в электростатическом поле можно записать

W = Сφ 2 /2 = Q φ/2 = Q 2 /(2C) . (3.1.54)

Конденсатор, как и проводник, тоже обладает энергией, которая может быть вычислена по формуле, подобной 3.1.55

W = С(∆φ) 2 /2 = Q∆φ/2 = Q 2 /(2C) , (3.1.55)

где ∆φ – разность потенциалов между обкладками конденсатора, Q – его заряд, а С – емкость.

Подставим в 3.1.55 выражение для емкости 3.1.49 (C = ε 0 εS/d ) и учтем, что разность потенциалов ∆φ = Ed , получим

W = (ε 0 εS/d)(Ed 2)/2 = ε 0 εE 2 V/2 , (3.1.56)

где V = Sd . Уравнение 3.1.56 показывает, что энергия конденсатора определяется напряженностью электростатического поля. Из уравнения 3.1.56 можно получить выражение для объемной плотности электростатического поля

w = W/V = ε 0 εE 2 /2 . (3.1.57)

Контрольные вопросы

1. Где располагаются электрические заряды у заряженного проводника?

2. Чему равна напряженность электростатического поля внутри заряженного проводника?

3. От чего зависит напряженность электростатического поля у поверхности заряженного проводника?

4. Как обеспечивается защита приборов от внешних электростатических помех?

5. Что такое электроемкость проводника и какова единица ее измерения?

6. Какие устройства называются конденсаторами? Какие типы конденсаторов существуют?

7. Что понимают под емкостью конденсатора?

8. Каковы способы увеличения емкости конденсатора?

9. Что такое пробой конденсатора и пробивное напряжение?

10. Как вычисляется емкость конденсаторной батареи при параллельном соединении конденсаторов?

11. Чему равна емкость конденсаторной батареи при последовательном соединении конденсаторов?

12. Как вычисляется энергия конденсатора?

Согласно азам физики, известно о наличии магнитного поля вокруг проводника или катушки с током. Данное поле в полной мере зависит от проводника, среды распространения поля и силы тока. Аналогично электрическому полю, магнитное поле является неким носителем энергии. Поскольку основным критерием, влияющим на энергию поля, является сила протекающего тока, то работа тока по созданию магнитного поля будет совпадать с энергией магнитного поля.

Энергия магнитного поля

Природу такого явления, как энергия магнитного поля, проще осознать, рассмотрев процессы, проходящие в цепи.

Элементы схемы:

  1. L – катушка индуктивности;
  2. Л – лампочка;
  3. ε – источник постоянного тока;
  4. К – ключ для замыкания и размыкания цепи.

При замкнутом ключе, согласно картинке (а), ток протекает от плюсовой клеммы источника тока по параллельным веткам через катушку индуктивности и лампочку. По катушке индуктивности протекает ток I0, а через лампочку протекает ток I1. В первый момент времени лампочка будет гореть более ярко, ввиду большого сопротивления катушки индуктивности. По мере уменьшения сопротивления катушки индуктивности и увеличения тока I0 лампочка будет гореть более тускло. Это объясняется тем, что в первый момент времени поступивший на катушку ток пропорционален току большой частоты, исходя из формулы индуктивного сопротивления катушки:

XL=2πfL, где:

  • XL – индуктивное сопротивление катушки;
  • f – частота тока;
  • L – индуктивность катушки.

Индуктивное сопротивление катушки возрастает многократно. Катушка индуктивности в этот момент времени ведет себя как разрыв цепи. Со временем индуктивное сопротивление снижается до нуля. Поскольку активное сопротивление катушки индуктивности ничтожно мало, а сопротивление нихромовой нити лампочки велико, то практически весь ток цепи протекает через катушку.

После размыкания цепи ключом К, согласно картинке (б), лампочка не тухнет, а, наоборот, загорается более ярким светом и постепенно гаснет. Для осуществления горения лампочки необходима энергия. Энергия эта берется из магнитного поля катушки индуктивности и называется энергией магнитного поля. Благодаря этому катушка индуктивности выступает как источник энергии (самоиндукции), согласно картинке (в).

Определить активность магнитного поля возможно, рассмотрев электрическую схему.

Для расчета энергии магнитного поля есть необходимость в создании такой схемы, в которой энергия источника питания расходовалась бы непосредственно на образование магнитного поля. Соответственно, в схеме выше значениями внутреннего сопротивления источника питания и катушки индуктивности нужно пренебречь.

Обратите внимание! Из второго закона Кирхгофа следует, что сумма напряжений, подключенных к цепи, равна сумме падений напряжений на каждом из элементов цепи.

Общее напряжение цепи равно:

ε+εі=Ir+IR, где:

  • ε – электродвижущая сила (напряжение) источника питания;
  • εi – электродвижущая сила (напряжение) индукции;
  • I – сила тока цепи;
  • r – внутреннее сопротивление источника питания;
  • R – внутреннее сопротивление катушки индуктивности.

Поскольку рассмотренная цепь идеальная, и внутренние сопротивления равны нулю, то формула преобразовывается в такую:

Электродвижущая сила самоиндукции зависит от индуктивности катушки и скорости изменения тока в цепи, а именно:

подставив значение в общую формулу, получается:

  • ε-LΔI/Δt=0,
  • ε= LΔI/Δt,
  • ΔI= ε Δt /L.

Исходя из данной закономерности, с течением времени сила тока равняется:

Заряд, пройденный через катушку индуктивности, равен:

Объединив обе формулы, получаем:

Работа источника тока по переносу заряда по катушке индуктивности равняется:

A= εq=εLI2/2ε=LI2/2.

Поскольку рассматриваемая цепь является идеальной, а именно отсутствует какое-либо сопротивление, то затраченная работа источника тока пошла на формирование магнитного поля и соответствует энергии магнитного поля:

С целью исключения зависимости активности магнитного поля от характеристики катушки, необходимо преобразовать выражение через характеристику поля, а именно через вектор магнитной индукции:

  1. B=µ0µIn, где:
  • B – вектор магнитной индукции соленоида;
  • µ0 – магнитная постоянная (µ0=4π×10-7 Гн/м)
  • µ – магнитная проницаемость вещества;
  • I – сила тока в цепи соленоида;
  • n – плотность намотки, (n=N/l, где N – число витков, l – отрезок длины соленоида).
  1. L=µ0µn2V, где:

V – объем катушки (или объем магнитного поля, сосредоточенного в катушке) (V=Sl, S – площадь поперечного сечения соленоида, l – длина соленоида).

Если воспользоваться формулами (1 и 2), выражение, определяющее энергию магнитного поля, выглядит как:

Wмаг=B2V/2µ0µ.

Рассмотренная формула справедлива при условии, что фон однотипный. Если поле неоднородное, то необходимо рассматривать параметр, характеризующий концентрацию активности в этой зоне. Эта величина именуется как объемная плотность энергии магнитного поля.

Объемная плотность магнитной энергии

Она определяется по выражению:

ωмаг=Wмаг/V, где:

  • ωмаг – объемная плотность энергии магнитного поля;
  • V – объем некой зоны, где создано магнитное поле.

Единицей измерения объемной плотности энергии магнитного поля является отношение – Дж/м3.

Подставив в искомое выражение значение энергии поля W маг, получаем окончательную формулировку, определяющую объемную плотность:

ωмаг= B2/2µ0µ.

Изложенная информация подробно раскрывает порядок нахождения такого параметра поля, как энергия магнитного поля. Поскольку указанная величина применима для однородного поля, то для проведения вычислений в неоднородном магнитном поле используется величина, определяющая концентрацию или плотность энергии поля.

Видео

В случае действительных величин объёмная плотность энергии электромагнитного поля определяется выражением:

Если рассматривать векторы и как векторы с комплексными составляющими, то для получения действительного выражения для объёмной плотности энергии электромагнитного поля необходимо воспользоваться описанным выше приёмом:

Выражение (8) определяет «мгновенное» значение объёмной плотности электромагнитной энергии в рассматриваемой точке пространства, т.е. значение в некоторый момент времени t . Зависимость (8) представляет собой практически сумму квадратов действительных величин и поэтому является положительно определенной зависимостью. Её численные значения могут изменяться от нуля до некоторой максимальной величины. Представляет интерес вычисление средней по времени величины объёмной плотности энергии электромагнитного поля плоской волны. Средняя по времени физическая величина определяется по правилу:

. (9)

Для гармонических во времени процессов величину выбирают равной периоду колебаний , а начало отсчёта выбирают равным нулю.

Легко видеть, что имеют место соотношения:

;

; (10)

.

Аналогичные результаты справедливы и для векторов напряжённости магнитного поля.

С учётом полученных результатов средняя по времени величина объёмной плотности энергии электромагнитного поля в рассматриваемой точке пространства может быть описана зависимостью

Выражение (11) является локальным, действительным и положительно определённым. С его помощью можно вычислить энергию электромагнитного поля в некоторой области пространства:

, (12)

где энергия электрического поля и энергия магнитного поля определены соотношениями

, . (13)

Интегрирование в соотношениях (13) проводится по объёму рассматриваемой области пространства. Эти выражения ниже будут использованы при анализе балансовых энергетических соотношений.

Вектор Умова-Пойнтинга .

Плотность потока энергии электромагнитного поля, как известно, определяется выражением

При необходимости использовать результаты метода комплексных амплитуд действительное (вещественное) выражение для вектора записывают в виде:

Оценивая векторные произведения в соотношении (15), получаем:

;

.

.

В результате осреднения по времени зависимости (15) для мгновенного значения вектора плотности потока энергии приходим к соотношению:

. (16)

Таким образом, получают постоянную во времени векторную величину с вещественными компонентами. Интересно, что – формально - полученное выражение является действительной частью комплексного выражения

Это порождает возможность ввести в рассмотрение «комплексный вектор Умова-Пойнтинга»:

. (18)

Обоснованием целесообразности такого приёма служит соотношение:

Физическое содержание соотношения (19) заключается в том, что среднее по времени от вектора плотности потока энергии электромагнитного поля в гармоническом приближении (вещественная постоянная векторная величина!) может быть вычислено как действительная часть комплексного вектора Умова-Пойнтинга.

Объёмная плотность мощности .

Для действительных величин объёмная плотность мощности вычисляется по выражению

Выражение (20) – произведение двух гармонических величин - является нелинейным, поэтому для получения действительной величины в методе комплексных амплитуд требуется исходить из соотношения:

Зависимость (21) определяет действительное (вещественное) значение объёмной плотности мощности в произвольный момент времени. Поскольку рассматриваемая величина осциллирует во времени, можно ввести осреднённую по времени величину объёмной плотности мощности аналогично тому, как это было сделано выше при рассмотрении объёмной плотности энергии:

Анализ выражения (22) показывает, что можно ввести комплексную плотность мощности

поскольку легко проверяется соотношение

. (24)

Теперь можно приступить к рассмотрению балансовых энергетических соотношений в неоднородной плоской электромагнитной гармонической волне.

Комплексный аналог теоремы Пойнтинга .

Уравнения Максвелла – уравнение электромагнитной индукции и уравнение полного тока в дифференциальной форме – запишем с использованием гармонического приближения:

Заметим, что уравнения (25)-(26) справедливы, если форма зависимости гармонических величин от времени определена соотношениями (6).

Если , то имеет место , поскольку из первого уравнения следует и . Другими словами говоря, если справедливо линейное уравнение для комплексной величины, то справедливо и комплексно сопряжённое уравнение. Воспользуемся этим математическим утверждением и запишем уравнение (26) в комплексно сопряжённой форме:

Умножим уравнение (25) скалярно на вектор , а уравнение (27) – на вектор :

Вычтем из уравнения (28) уравнение (29):

Левая часть уравнения (30) может быть преобразована:

В принципе, здесь использовано известное векторное тождество, его можно проверить непосредственным вычислением в декартовой системе координат, а можно воспользоваться символическим методом и определением дифференциального векторного оператора «набла» (или оператора Гамильтона) . Продемонстрируем этот метод. Рассмотрим дивергенцию векторного произведения двух векторных полей:

.

Для того чтобы можно было пользоваться обозначением как просто векторной величиной, перепишем предыдущее соотношение с учётом дифференциального характера оператора набла:

где индексом «с» помечены условно постоянные величины, их можно «выносить» за символ дифференциального оператора . Теперь полученное выражение можно рассматривать просто как сумму двух смешанных произведений трёх векторов. Известно, что смешанное произведение трёх векторов может быть записано в нескольких эквивалентных формах. Нам необходимо выбрать такую форму, чтобы «вектор » не оставался в крайней правой позиции: как дифференциальный оператор он должен на что-нибудь действовать.

Что еще почитать